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Calculation of the effect of polymer additive 
in a converging flow 
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The conical-channel flow of a dilute polymer solution is investigated theoretically. 
The stress field due to polymer additive is calculated using a new molecular model, 
based on the physical picture of the polymer molecules unravelling in strong flows 
and Batchelor’s theory for the stress in a suspension of elongated particles. Good 
agreement is obtained with the experimental results of James & Saringer (1980). The 
absence of a significant polymer effect in a two-dimensional case (the wedge-channel 
flow), observed by the same authors (James & Saringer 1982a), is also explained. The 
fundamental differences between the proposed model and the elastic-dumbbell 
models are discussed. 

1. Introduction 
In  an important recent work, James & Saringer (1980) performed careful measure- 

ments of the pressure drop in a flow of a dilute polymer solution through a conical 
channel (see figure 1). The Reynolds number was high enough that the velocity field 
inside the channel could be well approximated by the sink flow. James & Saringer 
(1980) noted that since ‘the flow field downstream of the exit is uncertain. . . , the 
reservoir-to-reservoir pressure differential does not correspond to a known velocity 
field’, and placed the downstream pressure port (A in figure 1) just before the exit. 
Their results therefore correspond to a flow with well-known, and simple, kinematics 
(the sink flow), which makes them suitable for a quantitative analysis. 

James & Saringer (1980) did observe very large non-Newtonian effects in this flow ; 
King & James (1983) later proposed that effects of such magnitude could be produced 
if the polymer ,chains ‘froze’, after some partial extension by the flow, due to 
intramolecular entanglements. However, the theory (Brochard & de Gennes 1977) 
predicts essentially no intramolecular entanglements (‘ self-knots ’) in dilute solutions 
for molecular weights below O( lo8) ; also, the well-known experimental fact that the 
chain scission in shear (or extensional) degradation occurs almost precisely at the 
midpoint of the chain (see, for example, Ode11 & Keller 1985) appears to contradict 
the idea of intramolecular entanglements (if they existed, they would randomize the 
distribution of the chain segments subjected to extension, and thus of the locations 
of rupture). 

No quantitative explanation exists at the moment of the observed large non- 
Newtonian effects in the conical-channel flow of James & Saringer (1980), nor of the 
virtual absence of such effects in the wedge-channel flow, also studied by James & 
Saringer (19824. The purpose of the present paper is to give such explanation, based 
on a new molecular model. It should be noted that the experiments of James & 
Saringer (1980,1982~) provide a unique opportunity for testing new (and old) models 
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RQURE 1. Sketch of the conical-channel flow. Pressure ports A and B are at distances rA and rB, 
respectively, from the apex 0. In the experiment of James & Saringer (1980) the upstream reservoir 
served as port B. 

of the hydrodynamics of dilute polymer solutions since the kinematics of the flow 
field is essentially independent of the polymer effect (see $3  below), which allows one 
to study the dynamical (stress) effect of the polymer without having to solve the 
highly nonlinear problem of flow modification. 

2. Themodel 
Let us first define some useful quantities. In the absence of flow, or in sufficiently 

weak flows, the macromolecules are in the coiled state and act hydrodynamically as 
spheres with some effective radius R,, which in a dilute solution is directly connected 
with the intrinsic viscosity [TI, polymer concentration by weight c, number density 
of polymer molecules in the solution n, and the hydrodynamically effective volume 
concentration of polymer g5 : 

$zR:n = Q = fc[97]. (1) 

Here the Einstein result for the effective viscosity of a dilute suspension of spheres 
was used. The conical-channel flow of a Newtonian fluid at high Reynolds number 
is well approximated by a sink flow outside the thin boundary layer, so that in the 
Lagrangian frame of a fluid particle the velocity field is a uniaxial extension, with 
zero vorticity, and the rate-of-strain tensor given by 

where the principal direction 1 is along the streamline. The principal strain rate 
Ell = Err E E is increasing along the path of a fluid particle (here T is a coordinate 
in a spherical coordinate system, centred at the apex of the cone). 

We need therefore to consider the behaviour of a polymer molecule in an 
extensional flow. Apparently, the first to do this was Frenkel (1944); however, this 
important work remained virtually unknown outside research on the shear 
degradation of polymers. The current theoretical understanding derives from the 



EfSect of polymer additive in converging $ow 425 

works of Peterlin (1966), de Gennes (1974), Hinch (1974, 1977), Tanner (1975), and 
Rabin, Henyey & Pathria (1985). The physical picture emerging from these studies 
served as the motivation for the model to be proposed here. 

This physical picture may be summarized as follows. At very small rates of strain 
the polymer chain preserves its undisturbed configuration (random coil, or its 
modification due to the excluded volume effects) and acts hydrodynamically as a 
sphere of radius R,. As the rate of strain seen by the macromolecule increases, the 
macromolecule stretches somewhat till the entropic restoring force (which is due to 
Brownian motion) balances the increased viscous pull of the extensional flow. At 
small deformations the restoring force must be proportional to (2 - 2R,,), where 1 is the 
hydrodynamically effective length of the elongated coil. On the other hand, the 
viscous pull at a given rate of strain E increases with 1 faster than linearly, say as 
la, where a approaches 2 as elongation grows (both the hydrodynamic size and the 
magnitude of the undisturbed velocity variation over the length of the macromolecule 
grow with I ;  see, for example, Hinch 1977). It is clear that for a rate of strain less 
than some critical value E,, the partially elongated coil will be stable, while for 
E > E,, the balance between the restoring force and the viscous pull will become 
impossible, and the stretching will become a runaway process. Equating both forces 
and their derivatives at E = Ecs, one obtains the expression for the ‘prestretching 
ratio’ /? = 1,,/2R, in the form /? = ./(a- 1); here I, ,  is the length of the elongated 
coil at E = Ecs, i.e. the maximum stable coil length. We may thus expect /3 % 2; this 
is close to the value /? = 1.8 obtained by Rabin et al. (1985). No experimental 
information on /3 appears to exist at the moment. 

We have defined the critical strain rate E,, as such that at E > E,, the macro- 
molecule cannot exist in a coiled state (i.e. E,, defines the stability limit of the coil). 
This value is, probably, somewhat higher than the value corresponding to the 
so-called ‘coil-stretch transition’ (de Gennes 1974) ; the latter, however, is relevant 
only in the thermodynamic (infinite time) limit, while flows in hydrodynamic 
experiments are normally transient in the Lagrangian sense. Incidentally, in such 
flows the extension of the chain should exhibit hysteresis effects, that is, once 
extended, the chain can be maintained for a long time in the extended state by a 
strain rate which is much smaller than E,, (de Gennes 1974; Hinch 1974,1977 ; Tanner 
1975; Rabin et al. 1985); eventually, the chain will be able to retract into a coiled 
state due to Brownian fluctuations, unless, of course, the strain rate has increased 
again above E,,. The value of the critical strain rate is expected to satisfy the relation 

E,,71 = W), 
where 71 is the longest relaxation time of the macromolecule. 

The fast increase of the viscous pull with the chain length means that, upon onset 
of the supercritical (runaway) regime, the elongation of the chain will essentially 
follow the elongation of the fluid element until the chain is nearly fully stretched 
(Daoudi 1976; Hinch 1977; de Gennes 1979, p. 192). This is usually described by 
saying that ‘the polymer molecule stretches (deforms) afEnely with the fluid ’, and 
C O M O ~ ~ S  the image of something like a piece of very soft rubber, deforming the same 
way as the fluid in its place would deform. 

A different physical picture of the supercritical regime will be proposed here, with 
important consequences for the calculation of the stress field due to polymer additive. 
This picture was motivated by the description of the terminal equilibrium conSgur- 
ation of a macromolecule stretched by a strong flow, first given by Frenkel (1944); 
recently, the same description was arrived at, independently of Frenkel’s work, by 
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de Gennes (1974, p. 5041), by Hinch (1977, p. S26), and, in the framework of a detailed 
analysis based on the rotational isomeric state theory, by Rabin et al. (1985, p. 49). 
Let us quote from the abstract of Frenkel’s (1944) paper: ‘ . . .the central portion of 
the molecule becomes straightened out along the direction of flow, as soon as [the 
critical velocity gradient] is reached, while the two end portions remain curled in the 
usual way’. In  other words, in the terminal equilibrium configuration the macro- 
molecule is not stretched uniformly, but may be divided heuristically into a taut 
central portion, straightened out along the axis of extension, and two randomly coiled 
end portions (in reality, of course, the transitions between the portions are gradual), 
for the simple reason that the viscous pull due to extensional flow is not uniform along 
the length of the chain, but roughly parabolic, being zero at the ends and maximum 
in the middle (which is why the chains break in the middle in the shear degradation 
experiments; this was also predicted by Frenkel 1944). 

Let us now postulate that the above ‘coil-string-coil’ picture is also a good 
description of the configuration of the macromolecule during the transient process of 
the supercritical stretching, from some moment soon after its onset and till the 
stretching is complete. That is, unlike in the case of the subcritical (E<E,,,) 
stretching, when the Brownian motion ensures that the instantaneous configurations 
of the chain are randomized within its hydrodynamically effective ‘envelope ’, the 
supercritical stage should be described by the word unravelling, whereby the central 
portion is straightened out first and then remains taut and grows in length at the 
expense of the two coiled portions at the ends; these end portions move apart in a 
symmetrical fashion under the influence of the flow, simultaneously diminishing in 
size. If the flow later becomes weak, the chain will curl back into a coil. In  other words, 
each half of the chain unravels (in a strong flow) and curls back (in a weak flow) just 
like the string in the well-known children’s toy, the ‘yo-yo’, unravels and curls back 
when the yo-yo is played. The term ‘yo-yo model’ may be used to designate the 
present approach. 

We are now in a position to discuss the polymer effect on the macroscopic stress 
field. It is obvious that the end coils, moving apart with the flow, will not add 
substantial energy dissipation (the relative increase in ‘viscosity’ due to the end coils 
should be of the same order as that due to the undisturbed coil in a weak flow, i.e. 
O(c[q]), which is small by definition of a dilute solution). On the other hand, the central 
portion of the chain, whose length at higher elongations will constitute essentially 
the entire hydrodynamically effective length of the macromolecule I ,  acts hydrody- 
namically as a taut string; such a string is completely equivalent to a rigid rod in 
terms of the additional stress generated in a pure straining motion. We can thus use 
the theory for the stress in a suspension of rigid rods, developed by Batchelor (1971) 
with the express purpose of providing a rigorous basis for modelling polymer 
solutions. 

The symmetry of the uniaxial extension (2) implies that the additional deviatoric 
stress due to polymer molecules a‘ will have the same tensorial structure as the 
rate-of-strain tensor E and so may be written as 

0‘ = 2[vs E,  (3) 

where vs is the viscosity of the solvent, and [ is the ratio of the contributions to the 
bulk deviatoric stress due to the presence of the macromolecules and due to the pure 
solvent. This does not mean, of course, that the rheology of the polymer solution can 
be described by (3) in general - it  certainly cannot. It is only due to the particular 
structure of the flow under discussion that (3) is valid. Roughly speaking, this equation 
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describes not a certain fluid but a certain flow ; it is, however, completely rigorous 
within this task, and does not imply any additional assumptions. Note that [ is not 
a constant but a function of the extension of the macromolecules, and thus of the 
history of motion. According to Batchelor (1971, equation (5.2)), this function is given 

where # is the hydrodynamically effective volume concentration, i.e. the number 
density n multiplied by the volume of a rigid rod which has the same length 1 as the 
macromolecule and produces the same perturbation in the flow. 

It is important to write the expression for [ in the above form, and not in the form 
[ = $(#/log (x/#)) (Z2/de), where d is the diameter of the rod, as originally given by 
Batchelor (1971). The two forms are, of course, completely equivalent for the rigid 
rods considered by Batchelor (1971) ; however, using the second form in the context 
of modelling polymer solutions may lead to serious errors. This is so because the 
values of both d (i.e. the hydrodynamically effective cross-sectional diameter of a 
polymer chain) and 4 are highly uncertain. In  particular, it  is quite probable that, 
as the chain unravels, its hydrodynamically effective volume changes (probably 
decreases due to decreasing hydrodynamic screening) ; however, there appears to be 
no simple way to take this into account. The variation of d is equally hard to predict. 
It is therefore important to use the form given in (4), so that the poorly defined # 
appears only under the logarithm sign, and its exact value is thus of little significance, 
while d does not appear at all. If, on the other hand, one were to use the second form, 
one could be tempted to estimate d as the size of the monomer, or of the Kuhn 
statistical element, etc., in other words to assign to d some constant value. This would 
result in growing with 1 quadratically at most, or even much slower if the decrease 
in q5 with unravelling were taken into account, in contrast to the correct nearly cubic 
dependence displayed in (4). 

We shall now neglect the variation of # with the chain extension and assume that 
# is always given by (1). For the James & Saringer (1980) solution 
c = 2.0 x g/cm3 and [q] = 2.5 x lo3 cm3/g, so (1) gives # = 0.02 and log (x/#) 
= 5.06. The lowest conceivable limit for #, which, in all probability, under- 
estimates the true value by orders of magnitude, can be found as the ‘pure’ (i.e. not 
hydrodynamically effective) volume concentration of the polymer molecules, i.e. 
c / p p ,  where pp x 1 g/cm3 is the density of the polymer in its pure (not dissolved) 
state. This gives the value of 2.0 x i.e. lo3 times less than # from (1). However, 
even with this value the logarithm in (4) would change only by a factor of about 2, 
which should be compared to a possible 0(106) increase in 3 upon extension due to 
the l3 term. Clearly, the variation of # can be safely neglected. 

Strictly speaking, (4) becomes valid only after the macromolecules are stretched 
so strongly that they begin to interact hydrodynamically. At  the initial stage of the 
supercritical stretching this is certainly not the case ; moreover, modelling the 
macromolecule as a taut string between two coils, approximating the length of this 
string as the total effective length 1, etc., are also hardly justifiable at this initial stage. 
Thus, (4) must be seriously in error there, and would need to be modified. (The error 
is in the direction of underestimating the polymer effect.) However, the largest and 
most important contribution of the additional stress due to macromolecules takes 
place, of course, where the macromolecules are strongly elongated ( 1  is large), and so 
the above modification would not change the overall result substantially. In other 
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words, where the prediction of (4) is substantially different from the true value of 
c as defined in (3), both the true value and the prediction are so small (in a dilute 
solution!) as to be entirely negligible. We will therefore use (4) for all I? upon onset 
of the supercritical stretching. 

Then, combining ( l ) ,  (4), and the definition of the prestretching ratio p, we obtain 

or 

where 

(5) 

Let us briefly discuss the two dimensionless quantities involved, the ‘polymer 
parameter ’ K and the variable 5. Since /3 is likely to be about the same for all flexible 
polymers, while the log factor is not likely to change by more than a factor of 2 (in 
either direction) within the realm of dilute solutions, we can say that K is roughly 
proportional to c[T,I], with the numerical coefficient that is about 0.3 for the polymer 
solution used by James & Saringer (1980) if we use /3 = 1.8 as calculated by Rabin 
et al. (1985). Generally, K is mainly determined by the easily measurable quantities 
c and [q] ,  which makes it convenient to use. 

The variable 5, though defined in terms of the effective length of the polymer 
molecule, is essentially a kinematical quantity, namely, it is the relative elongation 
(i.e. the current length divided by the initial length) of a material line element, lying 
along the principal axis of extension, from the critical point where E = E,,. It is thus 
a function of the history of the motion, and of the critical strain rate E,, as a 
parameter. The actual polymer size has been scaled out of the problem. 

Obviously, E is limited from above by the maximum possible elongation of the 
chain. For a typical polymer with the number of the Kuhn statistical elements 
N = O( lo4) the maximum value of 5 is thus O( 100) ; such elongations are not reached 
in the James & Saringer (1980) experiment before the downstream pressure port A 
(see $4 below). Rupture of the chains will also change E (and n). 

This essentially completes the formulation of the ‘yo-yo’ model.? If we had a 
general flow field, this formulation would not be sufficient, of course. We would need 
generalized criteria for both the onset of the supercritical stretching and the return 
to the coiled state, as well as a more complete constitutive relation for the 
‘stretched-polymer’ fluid, which cannot be described by (3) in a general case. These 
questions are the subject of current research; the sink flow allows us to test the 
viability of the yo-yo model in the simplest form given above. 

3. Calculation of the stress field 
The unravelling of the macromolecules strongly increases the ‘viscosity ’ of the 

fluid, and this may, in principle, change the kinematics of the flow (a highly viscous 
Newtonian fluid would not form boundary layers, for example). James & Saringer 
(1980) excluded the cases when the change in kinematics was obvious (i.e. when a 
large-scale vortex ring appeared in the channel), but this does not guarantee that the 
flow field in which they made their measurements can, in fact, be represented as an 

t The model, in a brief preliminary form, was first presented in Ryskin (1985). 
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irrotational sink flow in the core plus a thin boundary layer. We will nevertheless 
assume that it can, for the following reasons. 

The macromolecules that are carried along the streamlines passing through the 
irrotational core (the sink flow part) are subjected to a strong extensional flow and 
thus begin to stretch, as described in the preceding section. On the other hand, the 
macromolecules carried through the boundary-layer region are subjected to a weak 
shear flow (where they rotate with vorticity and are therefore pulled apart and 
compressed in an alternating manner) and thus are not likely to stretch appreciably. 
Note that in the conical-channel flow the thickness of the boundary layer quickly 
diminishes downstream, and so the macromolecules already stretched by the 
extensional flow in the core do not enter the boundary layer (if they did, they could 
remain stretched even in a comparatively weak flow). These considerations suggest 
that the ‘ coiled-polymer ’ fluid (C-fluid) in the boundary layer retains its low viscosity, 
nearly equal to that of the solvent, while the fluid in the core has its ‘viscosity’ 
increased owing to the stretched macromolecules. The velocity fields in these two 
regions are connected only through the velocity and pressure at the outer edge of 
the boundary layer. If the boundary layer is thin, the change in the pressure at its 
outer edge due to the polymer effect in the core, while causing some changes in the 
velocity distribution within the boundary layer, will not produce a sizable back effect 
on the velocity field in the irrotational core (but see $5) .  This means that if a sink 
flow is dynamically possible for the ‘stretched-polymer’ fluid (S-fluid) in the core, the 
kinematics of the whole flow field in the conical channel may remain essentially the 
same as for the pure solvent, though the stress field will be different. 

The velocity field for the three-dimensional sink flow follows immediately from the 
continuity equation V*u = 0 alone (where u is the velocity), if one can assume that 
u depends only on the distance from the apex r and is independent of both angular 
coordinates in the corresponding spherical coordinate system. Consequently, this 
velocity field is dynamically possible in any fluid whose rheology does not contradict 
the above assumption, that is, does not produce angular dependence in the stress field 
where none is present in the kinematics. The S-fluid is obviously of such type (see 
(3)). The core of the entire flow field is therefore the sink flow of the S-fluid, with the 
‘viscosity’ which is rapidly increasing downstream; this core is shielded from the 
no-slip boundaries by the thin boundary layer of the C-fluid with constant low 
viscosity. 

The above considerations are obviously not too rigorous, and a careful analysis of 
the boundary-layer structure would be highly desirable, especially of its outer region 
where the flow character changes gradually from weak to strong. These interesting 
questions are, however, beyond the scope of the present work. 

Before proceeding with the calculation of the stress, it  is important to consider 
carefully what is actually measured by a pressure gauge connected to the pressure 
port A. In  Newtonian fluid mechanics it is well known that the pressure is uniform 
across a boundary layer; a slight reformulation of the usual argument shows that 
it is equally correct to assert the uniformity of the normal stress across a boundary 
layer. In the Newtonian case the two differ, besides the sign, by only a negligible 
amount; the difference, i.e. the viscous normal stress, is exactly zero on the rigid 
surface due to the incompressibility condition, while its variation along the surface 
in the effectively inviscid (high-Reynolds-number) flow just outside the boundary 
layer is negligible in comparison with the inertia forces, and thus the pressure 
variation. 
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The situation is quite different in the present problem. The fluid just outside the 
boundary layer has high ‘ viscosity ’, so the normal stress does not reduce to minus 
pressure there, though it does on the rigid surface. Therefore, the pressure at the wall 
pw,  measured by the pressure gauge, is equal to minus the total normal stress in the 
sink flow just outside the boundary layer, i.e. 

without the polymer (for the pure solvent) 

P ,  = ~ , - 2 ~ s E o e ,  

while for the polymer solution 

P ,  = Ps+P’-27sEoe-4w 

The right-hand side in the above expressions is evaluated on the irrotational sink flow 
in the core; here p ,  is the pressure in the pure solvent flow, (p,+p’) is the pressure 
in the polymer solution flow with the same flow rate, 0 is the angular coordinate 
normal to the wall of the channel. The term 27, E,, can be neglected in both cases 
as explained above. 

We are only interested in the polymer-induced change A in the pressure differential 
between the ports B and A (i.e. pressure at B minus pressure at  A). Clearly 

From the structure of the tensor u’ (see ( 2 )  and ( 3 ) )  we see that 

C ~ O  = = - [7, Err. 

The additional pressure field p’ arises exclusively in order to balance the force from 
the additional deviatoric stress u‘ (other terms in the equation of motion for the 
polymer solution coincide with the ones for the pure solvent and thus balance each 
other). We thus obtain 

-Vp’+V-u‘ = 0 

and then 

where 3 is a unit vector in the radial direction. Here we used the facts that V - E  = 0 
in an irrotational flow of an incompressible fluid, that [ = [ ( r ) ,  and that P is one of 
the principal directions of E in the sink flow. 

Thus 

and so 

So fa we have used only the symmetry of the sink flow nd the assumption of the 
polymer effect being negligible in the boundary layer. To proceed further, we need 
the particular form of [ as a function of r ,  which depends on the model and the 
kinematics of the flow. As is evident from (5 ) ,  we need to know the dependence on 
r of 6, the elongation of a material line element from the critical point rcs (where 
E = E C J .  Consider a spherical shell of fluid, centred a t  the apex : as it moves in a sink 
flow, its area decreases as r2, and thus its thickness must increase as r-2. This means 
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that f a r-2, since we are interested in the elongation of a material line element 
directed along r.  One thus obtains (see, for example, de Gennes 1979, p. 192) 

To determine rcs, we recall that  in sink flow 

where 

Q is the total flow rate, and Bo is the half-angle of the cone. Therefore 

and we obtain (7) 

Equation (7) obviously applies only until the molecule is ‘fully stretched’; 
afterwards f will be constant. However, in the experiment of James & Saringer (1980) 
this may be shown a posteriori to happen after the downstream pressure port A and 
hence is of no consequence for the measurements (see 94). Thus, for the analysis of 
this experiment, (7) can be used without modification. 

Returning now to (6) for the polymer-induced change in the pressure drop, we see 
that it can be written as 

Here we took into account that rA < r,, < rB (in the experiment of James & Saringer 
1980 the upstream reservoir served as the port B) and neglected the polymer 
contribution to the stress at r > r,,, where the macromolecules are still coiled; also, 
since the integrand in (6) tends to zero very rapidly with the increase in r,  viz. as 
r-l0, the integration can be formally extended to infinity, with the error thus 
introduced being small (6 is then formally defined by (7) for all r). 

The final result for the polymer-induced change in the pressure differential is as 
follows : 

A = - -  7 ~ 7 s  Q3 

3 x3( 1 - cos 80)3 @, r i  

= -- 28 Pc[qlqsQ3 
45 n3( 1 - cos t9J3 log (5~/2c[q]) E,, r i  ’ 

4. Comparison with experiment 
In  the James & Saringer (1980) experiment, the requisite values were: Bo = 29O, 

so that rA can be estimated (see their figure 4) as 0.021 cm; q, % 0.01 g/cm s;  
[q]  = 2.5 x lo3 cm3/g; c = 2.0 x g/cm3. Taking the acceleration due to gravity as 
980 cm/s2, we obtain 

where E,, is in s-l, Q in cm3/s, and d in cm of water head differential. 

A = - 1.29 x 109 (PEL;) ~ 3 ,  (9) 
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FIQURE 2. Comparison of the scaling law for the polymer-induced change in the pressure drop 
between ports B and A with the experimental data of James & Saringer (1980). Solid line, the scaling 
law -A a Q8, see (9); points, the experimental data, taken from figure 6 of James & Saringer 
(1980). 

Figure 2 presents the experimental data for A ,  taken from figure 6 of James & 
Saringer (1980), as the difference between the head differentials for water and for 
polymer solution at  the same flow rate. Since /3 and Ec, are not known precisely, we 
represent the scaling - d oc Q3 on the log-log plot by drawing a straight line through 
the experimental points, whose slope corresponds to the scaling. It can be seen that 
the data are in good agreement with the scaling; comparing now the equation of the 
line, viz. 

with (9), we obtain an estimate for PEL: of 

A=-5.3x104Q3, 

PE;: x 6.4 x loT3 s. (10) 

We can now check the consistency of our assumption (see (7)) that the macro- 
molecule is not yet ‘fully stretched’ when it passes the pressure port A. To see this, 
we find the degree of elongation at  the port A, where the effective chain length will 
be denoted as I , ,  from the formula 

which gives about 23 for the highest flow rate in figure 2, and about 8 for the lowest. 
The ‘full ’ extension of the macromolecule would correspond to a degree of elongation 
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of order 100; our solution is therefore self-consistent. It is of interest to note that 
the supercritical stretching begins at the distance from the apex rcs which is about 
3.6rA for the highest flow rate in figure 2, and about 2.1t-A for the lowest (the actual 
exit is located at about 0.7rA, see figure 4 of James t Saringer 1980). 

The parameters /3 and E,, in (10) are of a different nature: the first is expected 
to be nearly the same for all flexible polymers, while the second must be characteristic 
of a particular polymer-solvent pair. If we use the value = 1.8 calculated by Rabin 
et al. (1985), we obtain from (10) 

E;: x 2.7 x a. (11) 

As mentioned in 92, molecular theories predict E;; z T ~ ,  where T~ is the longest 
relaxation time of the polymer molecule. An expression for T~ can be written in a form 
involving only easily measurable quantities and thus nearly independent of the 
underlying molecular theory (except for a numerical factor; see Ferry 1980, pp. 190 
and 195). Choosing the numerical factor for the non-free-draining (Zimm) case, one 
obtains 

where R is the gas constant, T the temperature, and M the molecular weight of the 
polymer (for the free-draining Rouse case one would have 0.61 instead of 0.42). James 
& Saringer (1980) used Polyox with M = 8 x 10' g/mol at T = 295 K, as mentioned 
in their later paper (James t Saringer 1982~).  This gives 

T1 = 3.5 x 10-3 8 .  

The agreement with (1 1) is much better than could be expected, taking into account 
the many uncertainties in the theory, imprecise knowledge of the position of the 
pressure port A, etc. Indeed, such agreement should probably be considered 
fortuitous until more experimental data become available. 

5. Speculations on the abrupt appearance of a vortex ring in the conical 
channel 

Experiments (James t Saringer 1980) show that at sufficiently large flow rates a 
large unsteady vortex ring suddenly appears in the flow. A tentative explanation of 
this phenomenon may be attempted as follows. 

In  the Newtonian flow through a conical channel the pressure at the outer edge 
of the boundary layer (called the external pressure hereinafter) is decreasing 
downstream, and thus there is no tendency for the boundary layer to separate. The 
polymer effect is to increase the external pressure by the amount - A ,  which is zero 
at the critical point rcs, but is rapidly increasing downstream after that point. The 
new external pressure may thus have a minimum at some point downstream of rcs, 
creating conditions for the boundary layer to separate; the separation point being, 
presumably, not far downstream from the point of minimum pressure. Since the 
polymer effect is greatest near the exit, the separation point will first appear there 
and will be moving upstream as the flow rate is increased. Finally, when the size of 
the separated region becomes comparable with the exit opening, the latter will be 
sufficiently obstructed, and this will lead to an increase in flow velocity and strain 
rate, with the resulting further increase in polymer pressure and backflow. This 
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positive feedback is likely to result in the abrupt creation of a large-scale baCkllOW, 

i.e. a vortex ring, as is indeed observed. 
An approximate condition for the flow separation to be located at a given point 

can be derived as follows. The external pressure can be written as (neglecting 
Newtonian viscosity) 

-fpue - A + const, 

while the pressure differential between the upstream reservoir and the given point is 

+ue + A. 

Since u2 varies with r as r-4 and A as T - ~ ,  taking derivative of the external pressure 
with respect to r and equating it to zero yields (after multiplication by r )  

$uz+9A = 0. 

Thus at the separation point d x -bu2 and the pressure differential is about half 
of its water value. The maximum polymer effect reported by James & Saringer (1980, 
figure 6) for the port A is of just about this magnitude, and one might guess that 
the data stop a t  this point because some flow instability appeared; this is indeed the 
case (D. F. James 1986, private communication). 

Since A a cQ3 while up a Qa, one may expect that the flow rate necessary for the 
vortex creation should scale as c-l. This does not explain, however, why more 
concentrated solutions (c = 80 p.p.m.) exhibit abrupt vortex creation before any 
appreciable change in the pressure drop (see figure 3 of James & Saringer 1980). Part 
of the explanation may lie in the fact that at  low flow rates the boundary layer is 
very thick, so that the effective exit opening is narrow and may be sufficiently 
obstructed by a rather small flow separation. A simple test of this view and the above 
estimates would be to increase the polymer concentration from zero while running 
the experiment at a constant flow rate. If the above picture is correct, one should 
observe stable flows (without a large-scale vortex) at much higher flow rates and 
concentrations, and the transition to the vortex flow should follow the estimates given 
above. 

6. Resolution of the two-dimensional-sink paradox 
In a later publication, James & Saringer (1982a) reported some experiments with 

a two-dimensional sink flow in a wedge-shaped channel. They measured the reservoir- 
to-reservoir pressure drop and found that its relative increase upon addition of 
polymer was very much smaller than in the conical channel, viz. about 1&15% 
compared with 300 %, for the same exit strain rate. It is difficult to analyse the 
reservoir-to-reservoir data quantitatively since they may reflect complicated changes 
in the flow kinematics upon passing the exit. The best that can be done here is to 
estimate the polymer-induced change in the pressure drop between the upstream 
reservoir and the exit itself. For convenience, we shall present in parallel the results 
for the conical-channel flow (i.e. three-dimensional sink), some of which are equivalent 
to those derived in $3, but are written in an alternative form, and the new results 
for the wedge-channel flow (two-dimensional sink). It should be noted that in the 
latter case the additional stress due to the polymer does not have the same tensorial 
form as the rate-of-strain tensor (see Batchelor 1971); this does not, however, 
complicate the calculations seriously. 
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One obtains (here r belongs to different coordinate systems - spherical and 
cylindrical - in three and two dimensions) 

Conical channel (three-dimensional) Wedge channel (two-dimensional) 

where q depends on the total flow rate differently in three and two dimensions. 

and a pressu~e port A in the channel wall near the exit is 
The polymer-induced change in the pressure drop between the upstream reservoir 

where EA = E 1,. 
However, a better estimate for the reservoir-to-reservoir 'pressure ' effect is 

obtained if one calculates the polymer-induced change in the rr-component of the full 
stress tensor, since it is this component that can be viewed aa transmitting the normal 
force between the fluid in the channel and the fluid in the downstream reservoir. This 
change is given by (here rex is the radial popition of the exit) 

rA. 

which yields an increase of magnitude 

For the same exit strain rate E,, the ratio of this increase in the conical channel to 
that in the wedge channel is 

-=- A%) 10 (".>" - 
AE) 9 E,, ' 

Since E,, z 3 x lo2 s-l and the highest exit strain rate in the James & Saringer (1980, 
1982a) experiments was about 3 x lo4 s-l (see figure 2 of the second paper), this ratio 
could easily reach O(l0). Moreover, James & Saringer (1982a) actually compared the 
relative increases in the pressure drop over the values for water and found these to 
be about 10-15 % in the wedge flow compared with up to 300 % in the cone flow. The 
pressure drop for water can be estimated aa l e g x ,  which can be rewritten as 
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Then we obtain (see figure 2 of James & Saringer 1982a for the geometrical 
measurements of the channels) : 

relative pressure drop 

increase in wedge flow 

which is about 26 at the highest exit strain rates, in agreement with the experimental 
observations. 

Qualitatively, the reason for the polymer effect being much smaller in the 
two-dimensional sink is the smaller degree of elongation reached before the exit. Even 
though the path of the supercritical stretching is longer in two dimensions for the 
same exit radius and strain rate (the critical radius can be written as re, (E,,/E,,)t 
in three dimensions and re, (E, , /E, , )~ in two dimensions), the total elongation reached 
by the exit tex is still greater in three dimensions, viz. (Eex/Ecs)i in three dimensions 
compared with (E,,/E,,)k in two dimensions. For Ee,/Ec, = O(100) this means that 
the two-dimensional elongation is less than half of that in three dimensions, and thus 
the polymer effect is smaller in two dimensions by an order of magnitude (recall that 

A very different analysis of the ‘paradox’ discussed in this section has just been 
published by Chakraborty & Metzner (1986), who utilized Maxwell-Oldroyd 
rheological models in order to explain the large differences between the polymer 
effects in three- and two-dimensional sink flows. (The two-dimensional sink flow of 
the Maxwell fluid has also been analysed by Tanner 1985, pp. 277-282.) It should 
be noted that some of the predictions of Chakraborty & Metzner (1986) are 
substantially different from ours. For example, they predict that the relative increase 
in the pressure drop due to polymer, plotted 0s. the exit strain rate, will exhibit a 
maximum, while our results indicate monotonic growth, at least until the strain rates 
are so high that the chain reaches a nearly full extension before the exit. The 
experiment with a conical channel does show a maximum at E,, x 4 x lo4 s-l (see 
figure 2 of James & Saringer 1982a); however, the decrease of the relative polymer 
effect beyond this point may be due to degradation of polymer, which becomes 
significant at these high strain rates (see James & Saringer 19823, pp. 330-331). 
Further experiments are clearly needed to elucidate these phenomena. 

g = K5’). 

7. Discussion 
A thorough experimental testing of the present results is, of course, highly 

desirable. Using a conical channel and varying the flow rate and the position of the 
pressure port, one could test the prediction A a Q3/4; if the channel shape is 
different from conical, a new analysis along the lines of $3  will be necessary (for the 
two-dimensional sink flow the results of $6 can be used; however, the polymer effect 
is small in this flow). If mass transfer measurements (e.g. using electrochemical 
technique - see Ambari, Deslouis & Tribollet 1984) were feasible, the detailed analysis 
of the boundary layer could become worthwhile. 

Using a conical channel with fixed pressure port and flow rate, one can check the 
prediction 

where the onset condition E,, 71 = O( 1) was assumed to hold. 

A cc [?I1 ?Is 71, 
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The relaxation time 71 could be obtained from independent experiments; alterna- 
tively one can substitute for it using (12) to obtain 

The last relation predicts a strong decrease of the polymer effect with temperature, 
in general agreement with observations (James & Saringer 1982b). It would be 
important, however, to separate experimentally the direct influence of temperature 
(via the !P term) from its indirect influence through vS and [7]. 

The molecular-weight dependence in (13) is very strong if [r]  is taken into account, 
viz. M3*5-M4-4, depending on the solvent power. The contribution of the high- 
molecular-weight tail of the polymer sample is thus disproportionately large ; a 
narrow molecular-weight distribution is highly desirable in future experiments. 

Integration of the force distribution along the unravelling chain (see equation (4.8) 
of Batchelor 1971) yields the magnitude of the stretching force at the midpoint of 
the chain 

7 s  El8 
in log (5n/2c[q]) ; 

the rupture of the chain should occur when this force becomes comparable to the bond 
strength. 

It is worth emphasizing that the importance of a thorough experimental check of 
the present theoretical results reaches beyond the conical-channel flow ; in particular, 
it will have a direct bearing on the question of choice among different models of the 
polymer behaviour in a flowing solution. Let us now discuss briefly the issues 
involved. 

It is generally understood that the bead-spring models of the Rouse or Zimm types 
are not suitable for describing the polymer behaviour in strong flows since these 
models are based on the linear Gaussian springs which are inadequate at large 
elongations. The (non-linear) elastic dumbbell is therefore usually advocated as the 
basic molecular model for the fluid dynamics of polymer solutions. 

In my opinion, the elastic-dumbbell model (originated by Kuhn & Kuhn 1943 and 
Hermans 1943), with any kind of an entropic spring law (i.e. Gaussian, inverse- 
Langevin or its approximations, etc.), is not likely to give an acceptable description 
of the polymer-chain dynamics and contribution to the stress during the transient 
supercritical stretching, for the simple reason that any entropic spring law is an 
essentially equilibrium concept, applicable only when the corresponding relaxation 
time (i.e. 71) is much smaller than the timescale of the imposed process. In  
supercritical stretching the imposed time-scale is E;: m 71. Using an entropic spring 
in such rapid motion would be akin to calculating the pressure on a piston, moving 
in a gas-filled cylinder, from the ideal-gas law and the instantaneous volume of the 
gas, even when the piston moves with a velocity equal to the speed of sound. 

In essence, this waa already understood by Kuhn & Kuhn (1945), who introduced 
the concept of ‘internal viscosity’ (see de Gennes 1979, pp. 198-203; Stockmayer 
1979). However, no reliable way to predict this quantity from the first principles 
exists; moreover, the concept is likely to be inadequate in the supercritical regime 
anyway, since, as its name implies, it  gives essentially a first-order (linear in the 
deformation rate) correction. Such a correction could be sufficient only if the implied 
expansion parameter (say, the relaxation time of the chain divided by the timescale 
of the imposed deformation) were small; in the supercritical regime it is O( I )  or higher. 

It is then obvious that in the supercritical regime the elastic dumbbell models are 



438 G. Ryskin 

likely to underestimate the additional stress due to the polymer by a large margin. 
It is worth emphasizing that this includes models with the nonlinear spring laws that 
produce finite extension, such as the inverse-Langevin spring (which is derived on 
the basis of equilibrium statistical mechanics and is therefore as much entropic as 
the Gaussian spring), or its empirical approximations - the Warner nonlinear spring, 
etc. 

The second, equally fundamental, problem with the elastic-dumbbell models is that 
the associated physical picture of the supercritical regime, i.e. the affine (or nearly 
so) ‘stretching’, is misleading. It implies the image of a rubber band or a similar 
extensible object, held at the ends and stretched, and this naturally leads to the 
entropic elasticity, etc. The non-uniform character of the distribution of the viscous 
pull along the chain span is ignored. This should be acceptable during the subcritical 
(non-affine) stretching, when the chain fluctuates rapidly inside its hydrodynamically 
effective envelope, which is somewhat elongated, but remains nearly steady on the 
chain timescale T ~ .  (Incidentally, the Gaussian spring should be sufficient in this 
regime since it provides a good approximation to the exact law up to very large 
extensions, of order 50% of the total contour length of the chain; see Flory 1969, 
pp. 313-326). In  the supercritical regime, on the other hand, Brownian rearrange- 
ments of large chain segments (comparable in length with the chain itself, i.e. the 
first-mode motions) occur on the same timescale 71 as the imposed deformation, and 
therefore are unable to alter the relative configuration of these segments, created by 
the flow. This means, first, that thermodynamic concepts such as the entropic 
elasticity of the chain are no longer applicable since different configurations of the 
chain are no longer equally probable (the same conclusion as the one reached above 
from a slightly different point of view). Secondly, this means that as soon as the high 
viscous pull in the centre creates a highly stretched portion there, the identity of this 
portion will be maintained; we are thus led to the ‘unravelling coil-string-coil’ 
picture of the yo-yo model. 

In  all probability, the yo-yo model oversimplifies the actual dynamics of the 
supercritical stretching. For example, one can easily imagine that at the initial stages 
of the supercritical regime several segments of the chain are unravelling in parallel, 
so we have the chain folded into a ‘bundle ’ of coil-string-coil systems. However, these 
details of the chain dynamics are not likely to have a significant influence on the 
resulting stress field, for the following reasons. First, the extensional flow is likely 
to straighten the chain, i.e. to unfold the bundle into a single coil-string-coil 
configuration, by the time the chain is sufficiently long to begin to interact 
hydrodynamically with other chains and to generate large stress. Secondly, even 
when we are dealing with a bundle of strings, the contribution to the stress should 
be about the same as that due to a single string of the same length since the 
cross-dimension is essentially of no importance (see (4) and the accompanying 
discussion) ; the length will be determined by the elongation of a material line element 
in all cases. In fact, all that is needed for the yo-yo model to work is the existence 
within the unravelling polymer chain, from some moment soon after the onset of the 
supercritical regime, of at least one taut chain segment spanning nearly the entire 
extent of the chain in the direction of stretching. 

We may conclude that the onset of the supercritical stretching signals the limit 
of usefulness of the elastic-dumbbell models (with any conceivable spring law). In 
the yo-yo model, the entropic elasticity plays no direct role in the description of the 
supercritical regime; thus all potential problems with the application of this 
equilibrium concept in a non-equilibrium situation are avoided. 
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The two major consequences for fluid dynamics are the following. First, the yo-yo 
model predicts much higher stress levels than the elastic-dumbbell models. Secondly, 
and perhaps even more importantly, the stress in the supercritical regime is produced 
via a different physical mechanism. The additional stress due to the elastic dumbbells 
originates in entropic elasticity; as such it should be proportional to kT (for a given 
instantaneous chain length; note that 71 and thus the onset of the supercritical regime 
are also functions of T), and the external mechanical energy spent on working against 
this stress should transform entirely into the elastic energy of stretched chains. The 
yo-yo model, on the other hand, produces the additional stress via a purely dissipative 
process; the stress is proportional to the solvent viscosity (again for a given 
instantaneous chain length) and thus decreases with a temperature increase, and no 
elastic energy storage is predicted. The latter prediction is, of course, valid only 
approximately : some elastic energy is always stored in a stretched chain; however, 
this stored energy is insignificant in comparison with the amount of energy dissipated 
during the supercritical regime. 

The flows of engineering interest that are strong enough to induce the supercritical 
stretching of the polymer chains are usually unsteady in the Lagrangian frame. Thus 
the terminal equilibrium stretched configuration is not expected to occur often, and 
the polymer contribution to the stress during the supercritical regime is likely to 
represent the most prominent dynamical effect of polymer additive. We have seen 
that the predictions of the elastic-dumbbell models and of the present yo-yo model 
for this contribution are drastically different. The need for reliable experimental data, 
obtained in the fluid-dynamical context, is thus quite obvious. 

I am grateful to the Shell Companies Foundation for partial hancial  support under 
the Shell Faculty Fellow program, to W. W. Graessley, E. J. Hinch, D. F. James, 
Y. Rabin and M. P. Tulin for helpful comments and discussions, and to the referees 
for constructive criticism. 
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